CORRESPONDENCE

fied by introducing! the concept of “admit-
tance matrix” looking into a given region.
This procedure does not necessarily facilitate
the actual computational work, but estab-
lishes a welcome link with network theory. To
this effect we introduce a complete set of real
orthonormal vectors @» on S’, and perform
the expansions

Et = Z Vmo_cm
El X thy = Z Imam-

Between the ¥’s and the I’s exists the cir-
cuit relationship

T=%4T ®)

where Y, is the radiating admittance looking
outside S;. The scalar product takes the form
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where 3¢, is the Hermitian part of . When
the medium outside S; is symmetric (i.e.,
e=€, u=fi, the conductivity being incorpo-
rated in ¢), Y, turns out to be symmetric,* and
its Hermitian part is the conductance matrix
Gy. In the absence of energy sources, (€q, &)
is always positive, hence, JC, is positive defi-
nite. To determine ¥, two circuit equations of
the type (8) must be written.! One obtains, by
elimination of T,

I, = Y +Y)7 (10)

where Y is the admittance looking inside S;.
The column vector I, represents the expansion
coefficients /,.. of the surface current produced
by the sources J on the short-circuited surface
S’. In other words, the current density 7. is
equal to 2l,.a,. Inversion of the (Yo+Y.)
matrix gives

V= +Y)* T, = ZI,. (A1)
To obtain optimum launching efficiency, this
value of V should be proportional to the vec-
tor V, corresponding to the desired tangential
field E,. Alternatively, the sources should
induce an (optimum) wall-current density
In= Yo+ Y) T (12)
We can now express X in the following form
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: J. Van Bladel, “The matrix formulation of scatter-
ing problems,” IEEE Trans. on Microwave Theory and
Techiiques, vol. MTT-14, pp. 130-135, March 1966.

2 J. Van Bladel, ““A generalized reciprocity theorem
for radiating apertures,” Arch. Elekt. Ubertragung, pp.
447-450, August 1966.

Equation (13) shows, in principle at least,
how to determine the coupling coefficient X,
given the actual short-circuit current 7, and
its optimum value 7,;. This relationship can
also be put in the form of a splitting

1y = )\701 + ng (14)

where the two parts, AT,; and T, are orthog-
onal with respect to a scalar product

(Too, Tip) = Toa*-[Z1-3Co- Z|- T (15)

It is to be noticed that the bracketed matrix is
Hermitian.
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The Numerical Solution of
TEM Mode Transmission
Lines with Curved Boundaries

INTRODUCTION

A finite difference solution of Laplace’s
equation has been used by several authors
[1], [2] to obtain the transmission-line param-
eters of uniform TEM transmission lines with
straight-line boundaries. This correspondence
shows that useful results can also be obtained
where the finite difference solution is modi-
fied to permit curved boundaries.

THEORY

Figure 1 shows a finite difference net used
to obtain the odd mode transmission line pa-
rameters of the transmission line with the
cross section shown in Fig. 2. It is seen that
four different types of nodes are produced by
the net. They are:

a) Conducting nodes such as 4
b) Irregular nodes such as B

¢) Exterior nodes such as C

d) Open-circuit nodes such as D
¢) Interior nodes such as E.

Only the irregular nodes are different from
those treated previously [1]. A suitable finite
difference approximation for use at irregular
nodes is given by Forsythe and Wasaw [3]
and Weber [7]:

( 1 n 1 ) Ve V. . Vs
hihs *hshe /" ha(hiths) T ha(hatha)
Vs . Vs
hs(ha+hs)  ha(hethe)
where the notation is given in Fig. 3.
Although the error in this approximation
is of the order O(4) as compared with 0(/%) for

interior nodes it has been shown [4] that the
overall accuracy is still of the order 0(/%).
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Fig. 1. Finite difference net.
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Fig. 2. Transmission line cross section.
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Fig. 3. Notation for irregular nodes.

PROGRAMMING

To analyze a particular problem the pro-
gram should only require the boundaries to
be specified. This was achieved by scanning
all the nodes of the net and suitably tagging
each irregular node. All conductor and ex-
terior nodes were also tagged by putting them
at an integral value of potential. Successive
over-relaxation [1] was used to obtain the ap-
proximate potential at each node of the net.
The transmission-line parameters were ob-
tained from either Gauss’s theorem [1] or the
energy [6] which was obtained by interpolat-
ing an approximate but continuous potential
function satisfying the boundary values.
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Fig. 4. Coupled rods.
TABLE I
CHARACTERISTIC IMPEDANCE OF COAXIAL LINE AND COUPLED RoDS
Coupled Rods
Zy from Gauss's Lower Bound on Zo % .
/b b Number of Theorem from Energy Formula | 2° from* Cristal [5]
/ s/ Nodes Used
Zo Even Zy Odd Zo Even Zo Odd Zo BEven Zo Odd
0.8 1.5 2170 25.43 25.22 25.44 25.24 25.2
0.6 1.7 2170 44.57 — 44.56 —_—
0.6 1.5 1984 44.76 44,13 44.69 44.13 44.7 44.13
0.6 1.5 5460 44.70 44.13 44.70 44.13
0.6 1.4 1891 — 44.02 — 44,02
0.4 1.5 1798 69 .89 68.69 69.87 68.67 69.87 68.69
0.2 1.5 1612 112.09 109 85 112.04 109.73 112.09 109.82
0.1 0.9 961 163.43 142.62 162.8 142.05 142.6
0.1 0.9 3721 163.40 142.58 163.27 142.5 142.6
0.5 05 961 65.52 46.08 65.08 46.09 46.1
Coaxial Line
. . Number of Zy from Gauss’s Lower Bound on Zs
Diameter Ratio Nodes Used Theorem from Energy Formula Exact Zo
1.5174 3721 25.0073 25.0019 25.0026
2.0 441 41.5627 41.5333 41.5601
2.0 3721 41.5843 41.5577 41.5601
2.3022 3721 50.0291 49,9947 49.9973
3.4933 3721 75.0351 74.9918 74.9989

* In a private communication Dr, Cristal stated that, in his Table II first case, the three values given by him are
Z» odd impedances. The Zo even impedances he obtained are given in this Table,

RESULTS

The program was used to obtain the char-
acteristic impedance Z, of coaxial line and
the even and odd mode characteristic im-
pedance (Z, even and Z, odd) of the coupled
rods shown in Fig. 4. The results are given in
Table I along with the results obtained for
coupled rods by Cristal who numerically
solved an integral equation. It is seen that the
error in the results is probably much less than
1 percent, and that the error in Cristal’s re-
sults is probably much less than the 1 percent
to 2 percent claimed by him.

CONCLUSION

It has been shown that a finite difference
solution of Laplace’s equation can give ac-
curate values of the transmission line param-
eters of uniform TEM transmission lines with
curved boundaries.
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A Wideband Coaxial-Line
Power Divider

In a recent paper, Parad and Moynihan!
discussed a strip-line three-port power di-
vider impedance matched in all three ports.
Previously, a coaxial-line version of the above
type of power divider was developed by Kap-
lan.? This correspondence discusses a method
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of significantly increasing the bandwidth of
this type of device; it is accomplished by open-
circuited quarter-wave transmission lines in-
troduced at a novel location within the device.
A wideband power divider has been designed,
fabricated, and tested; its measured perfor-
mance over an octave frequency band is pre-
sented.

Figure 1 shows the basic configuration of
the wideband power divider. Figure 2 shows
an internal view of the power divider. It is
noted that the square outer conductors of the
coaxial lines near all three ports are stepped to
circular cross sections to permit use of com-
mercial connectors.

The operation of this type of three-port
power divider is easily understood since it is
in concept a lossless four-port hybrid junc-
tion with a terminated inaccessible difference
port. Port 1, the input port, is the sum port; a
signal fed in at this port divides into two
equal, in-phase outputs at ports 2 and 3, the
collinear ports. The inaccessible difference
port is located at the end of the dual-mode
transmission line (balanced mode) at the
junction (on the center line) of the output
coaxial lines, If, instead, a signal were to be
applied at an output port, it would divide
evenly between the unbalanced and balanced
modes of the dual-mode line; the opposite
output port would be perfectly isolated (no
signal would be delivered to it). The signal in
the unbalanced mode would be delivered to
the sum port; the signal in the balanced mode
would be delivered to the difference port and
would, of course, be dissipated in the termi-
nation.

The design of this hybrid-type power di-
vider is readily optimized by maintaining sym-
metry and simultaneously matching the sum
and difference ports. Since symmetry can al-
ways be maintained by precision manufac-
ture, the limitation on bandwidth is caused by
the degradations with frequency of the spe-
cific matching schemes for the sum and dif-
ference ports. For this power divider, or
either of the previous ones,!? the reflection at
the sum port versus frequency is that of a
single stage quarter-wavelength impedance
matching transformer; this matches the } to
1 resistive discontinuity caused by the output
lines which are in parallel across the input line.
In the previous designs, the internal termina-
tion was directly connected to the difference
port; for these cases, the difference port reflec-
tion versus frequency is that of the short-cir-
cuited quarter-wavelength stub of balanced-
mode transmission line in parallel with the
termination. This reflection degrades much
more rapidly with frequency than that of the
sum port; therefore, it is the limitation on
bandwidth of these designs.

The essence of this correspondence is the
technique for significantly increasing the
bandwidth of this type of power divider; it is
accomplished by reactive compensation of the
reflection of the difference port. The compen-
sation is obtained by introducing open-cir-
cuited quarter-wavelength lines in series with
the termination; these lines are located inside
of the inner conductors of the output coaxial
lines, as shown in Fig. 1. The variation of
reactance of these series, open-circuited lines
tends to cancel that of the parallel, balanced-
mode short-circuited line. This results in a
reduction in the (inaccessible) difference port
reflection and a corresponding increase of the



